Package: scROSHI 1.0.0.0

scROSHI: Robust Supervised Hierarchical Identification of Single Cells

Identifying cell types based on expression profiles is a pillar of single cell analysis. 'scROSHI' identifies cell types based on expression profiles of single cell analysis by utilizing previously obtained cell type specific gene sets. It takes into account the hierarchical nature of cell type relationship and does not require training or annotated data. A detailed description of the method can be found at: Prummer, Bertolini, Bosshard, Barkmann, Yates, Boeva, The Tumor Profiler Consortium, Stekhoven, and Singer (2022) <doi:10.1101/2022.04.05.487176>.

Authors:Lars Bosshard [aut, cre], Michael Prummer [aut]

scROSHI_1.0.0.0.tar.gz
scROSHI_1.0.0.0.zip(r-4.5)scROSHI_1.0.0.0.zip(r-4.4)scROSHI_1.0.0.0.zip(r-4.3)
scROSHI_1.0.0.0.tgz(r-4.4-any)scROSHI_1.0.0.0.tgz(r-4.3-any)
scROSHI_1.0.0.0.tar.gz(r-4.5-noble)scROSHI_1.0.0.0.tar.gz(r-4.4-noble)
scROSHI_1.0.0.0.tgz(r-4.4-emscripten)scROSHI_1.0.0.0.tgz(r-4.3-emscripten)
scROSHI.pdf |scROSHI.html
scROSHI/json (API)

# Install 'scROSHI' in R:
install.packages('scROSHI', repos = c('https://lbosshard.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 7 scripts 172 downloads 6 exports 43 dependencies

Last updated 2 years agofrom:e2fed0e27e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:f_annot_ctgenesf_my_correlation_testf_my_wilcox_testf_score_ctgenes_Uf_score_profile_corscROSHI

Dependencies:abindaskpassBHBiobaseBiocGenericscrayoncurlDelayedArraydqrngFNNgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangeshttrIRangesirlbajsonlitelatticelimmaMatrixMatrixGenericsmatrixStatsmimeopensslR6RcppRcppAnnoyRcppEigenRcppProgressRSpectraS4ArraysS4VectorsSingleCellExperimentsitmoSparseArraystatmodSummarizedExperimentsysUCSC.utilsuwotXVectorzlibbioc